CONTENTS

Preface v
Foreword vii

Part I. Atoms and Molecules in Optical Lattices 1

1. Ultracold Ytterbium: Generation, Many-body Physics, and Molecules 3
 S. Sugawa, Y. Takasu, K. Enomoto and Y. Takahashi
 1 Introduction .. 3
 2 All-Optical Formation of Quantum Degenerate Gases
 of Ytterbium .. 6
 2.1 A route toward quantum degeneracy of Yb 6
 2.1.1 Zeeman slower 7
 2.1.2 Intercombination magneto-optical trap 7
 2.1.3 FORT and evaporative cooling 8
 2.2 Quantum degenerate gases and mixtures with Yb 10
 2.2.1 The first BEC in two-electron atoms: 174Yb ... 10
 2.2.2 BEC in other isotopes: 168Yb and 170Yb ... 11
 2.2.3 Degenerate fermi gases: 171Yb and 173Yb ... 12
 2.2.4 Fermi–Fermi mixture of 171Yb and 173Yb ... 13
 2.2.5 Optical Stern–Gerlach effect 14
 2.2.6 Bose–Fermi mixtures of Yb 16
 2.2.7 Bose–Bose mixtures of Yb 18
 2.3 Mixtures of Alkali-earth-metal-like atoms and
 Alkali-atoms .. 19
 3 Quantum Many-body Physics of Yb Atoms in an
 Optical Lattice 20
 3.1 Superfluid (SF)-Mott insulator (MI) transition ... 20
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Dual Mott insulators of bosons and fermions</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The system of dual Mott insulator</td>
<td>25</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Repulsively interacting dual Mott insulator</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Attractively interacting dual Mott insulator</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Thermodynamics</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>A Fermi-Fermi mixture in an optical lattice</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Photoassociation of Ultracold Ytterbium Atoms</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>$^1S_0–^1P_1$ photoassociation spectroscopy</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>$^1S_0–^3P_1$ photoassociation spectroscopy</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Special case: Dicke’s subradiant state</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-color photoassociation spectroscopy</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Optical Feshbach resonance</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>47</td>
</tr>
</tbody>
</table>

2. Rotational Excitations of Polar Molecules on an Optical Lattice: From Novel Exciton Physics to Quantum Simulation of New Lattice Models

Marina Litinskaya and Roman V. Krems

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Quantum Simulation of Lattice Models</td>
<td>55</td>
</tr>
<tr>
<td>2.1</td>
<td>Lattice models</td>
<td>56</td>
</tr>
<tr>
<td>2.2</td>
<td>Bosons, Fermions and Paulions</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Rotational Frenkel Excitons</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Binary Interactions between Frenkel Excitons</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Dynamical and kinematic interactions</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>External field control of exciton–exciton interactions</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Suppression of kinematic interaction</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Rotational Excitons in a Tunable Disordered Potential</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Optical lattice with tunable disorder</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Resonant enhancement of exciton–impurity scattering</td>
<td>73</td>
</tr>
</tbody>
</table>
Contents

5.3 Disorder correlations and localization–delocalization crossover .. 77
6 Quantum Simulation of Holstein Polaron Model 78
7 Conclusions .. 81
Acknowledgments ... 82
References ... 82

3. Quantum Phase Transition of Cold Atoms in Optical Lattices 87
Yaohua Chen, Wei Wu, Guocai Liu and Wuming Liu

1 Introduction .. 87
2 Optical Lattices ... 89
2.1 2D square optical lattice 89
2.2 Triangular optical lattice 90
2.3 Honeycomb optical lattice 92
2.4 Kagomé optical lattice 92
2.5 Theoretical model ... 94
2.6 Simulation of the spin-orbital coupling by
laser-induce-gauge-field method 95
3 Dynamical Mean-Field Theory 96
3.1 Introduction ... 96
3.2 Dynamical cluster approximation 96
3.3 Cellular dynamical mean-field theory 98
4 Quantum Phase Transition of Cold Atoms 99
4.1 Introduction ... 99
4.2 Quantum phase transition of cold atoms
in triangular lattices ... 104
4.3 Quantum phase transition of cold atoms
in honeycomb lattices ... 107
4.4 Quantum phase transition of cold atoms
in triangular Kagomé lattice 111
5 Quantum Phase Transition of Cold Atoms with
Spin-Orbital Coupling 117
5.1 Quantum phase transition of cold atoms
in honeycomb lattices with spin-orbital coupling 117
5.2 Quantum phase transition of cold atoms in Kagomé
lattices with spin-orbital coupling 120
Contents

6 Experimental Protocol .. 122
 6.1 The detection of Mott insulator in optical lattice 122
 6.2 The detection of quantum spin Hall state
 in optical lattice .. 123
7 Conclusion and Perspectives ... 124
Acknowledgments .. 124
References ... 124

Part II. Physics with Bose–Einstein Condensates 129

4. Unlocking the Mysteries of Three-Dimensional Bose
 Gases Near Resonance 131
 Mohammad S. Mashayekhi, Jean-Sébastien Bernier
 and Fei Zhou
1 Introduction ... 131
2 Current Experimental Status .. 133
 2.1 Dilute limit .. 133
 2.2 Strongly interacting regime: beyond the dilute limit 134
3 Current Theoretical Understanding 135
 3.1 Dilute limit .. 135
 3.2 Strongly interacting regime: beyond the dilute limit .. 135
 3.2.1 Results and comparison to other theories 136
 3.2.2 Comparison to experiments 140
4 Open Experimental and Theoretical Questions 140
Acknowledgments .. 141
References ... 142

5. Light Induced Gauge Fields for Ultracold Neutral Atoms 145
 I. B. Spielman
1 Introduction ... 145
2 Statement of Problem .. 148
3 Artificial Electric and Magnetic Fields 151
 3.1 Toy model: rotation .. 152
4 Alkali Atoms ... 156
 4.1 Two laser frequencies .. 158
 4.1.1 Two Raman beams .. 159
Contents

4.2 Dressed states: adiabatic picture
4.3 Dressed states: explicit picture
 4.3.1 Two-level system
 4.3.2 Synthetic fields
 4.3.3 Limitations
 4.3.4 Three-level system
 4.3.5 Interpretation: canonical and mechanical variables
4.4 Experimental implementation
 4.4.1 Introduction of a vector potential
 4.4.2 Induction of an electric field
 4.4.3 Inclusion of a magnetic field
5 Engineered Spin-Orbit Coupling
 5.1 General idea
 5.2 Experimental implementation of SOC
6 Conclusion
Acknowledgments
References

6. Manipulation of a Bose-Einstein condensate

Xiaoji Zhou, Xuzong Chen and Yiqiu Wang

1 Introduction
2 Manipulation of BEC’s Internal State by Majorana Transition
3 Manipulation of BEC’s External State by Superradiance
 3.1 Superradiant scattering at variable incidence angle
 3.1.1 Experimental description
 3.1.2 Patterns at $\theta = 90^\circ$
 3.1.3 Line patterns at $\theta = 0^\circ$
 3.1.4 Patterns at other angles
 3.1.5 Theory
 3.2 Superradiant scattering at several pumping frequencies
 3.2.1 Two-frequency-pumping superradiance
 3.2.2 Imprinting light phase on matter wave gratings
3.2.3 Momentum transfer in the high order modes 216
3.3 Effects of the effective linewidth of pump laser on co-operative atomic scattering 217

4 Manipulation of BEC’s External State by Standing Wave Pulses .. 220
4.1 Theoretical description of atoms diffraction from standing wave pulse laser 221
4.2 Experimental demonstration of multi-pulse scattering .. 223
 4.2.1 One-pulse scattering ... 225
 4.2.2 Two-pulse scattering ... 227
 4.2.3 Three- and four-pulse scattering 229
4.3 Design atomic interferometry momentum states with standing wave pulses 230
4.4 Rapid nonadiabatic loading in an optical lattice with standing pulsed perturbations 232

5 Manipulation of BEC’s External State in Optical Lattice .. 237
5.1 Theoretical description of scattering from an array of condensates 238
5.2 Experimental setup ... 240
5.3 Competition between different modes .. 242
5.4 Cooperative scattering measurement of coherence ... 246
5.5 Excitation in the lattice .. 249

6 Summary ... 253

References .. 254

7. Experimental Methods for Generating Two-Dimensional Quantum Turbulence in Bose–Einstein Condensates 261

 1 Introduction ... 262
 1.1 Experimental study of two-dimensional quantum turbulence in BECs 263
 2 Overview of Two-Dimensional Turbulence ... 265
 2.1 Key ideas of 2D turbulence .. 265
 2.2 Vortices and 2D quantum turbulence in BECs .. 267
Contents

3 Experimental Setup ... 270
4 Nucleation of Vortex Dipoles and Vortex Clusters 273
 4.1 Overview of experiment 274
 4.2 Implications for the experimental study of 2DQT 276
5 Generating Turbulent States by Modulating the Magnetic
 Trapping Potential .. 277
 5.1 Symmetric modulation: harmonic trap 278
 5.2 Symmetric modulation: annular trap 280
 5.3 Rotation of an elliptical magnetic trapping potential .. 281
6 Generating Turbulent States with a Stationary Blue-Detuned
 Laser .. 286
 6.1 Short pulse of blue-detuned laser light 286
 6.2 Intensity modulation of a blue-detuned laser beam ... 288
7 Stirring with a Blue-Detuned Laser Beam 292
8 Conclusions .. 295
Acknowledgments .. 296
References .. 296

Part III. Atom–Light Interactions 299

8. Nonlinear Optics Using Cold Rydberg Atoms 301
 Jonathan D. Pritchard, Kevin J. Weatherill
 and Charles S. Adams

 1 Introduction .. 301
 1.1 Optical Kerr nonlinearities 302
 1.2 Electromagnetically induced transparency 306
 1.3 Cooperative phenomena 307
 2 Rydberg EIT ... 310
 2.1 Dipole blockade .. 310
 2.2 Rydberg EIT ... 312
 3 Electromagnetically Induced Transparency in Cold Rydberg
 Gases .. 314
 3.1 Coherent optical detection of Rydberg states 315
 3.2 Sensitivity to electric fields 317
 3.2.1 Giant electro-optic effect 317
 3.2.2 Electrometry .. 318
 3.3 Interaction effects 320
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Superradiant cascade</td>
<td>320</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Co-operative optical nonlinearity</td>
<td>321</td>
</tr>
<tr>
<td>3.4</td>
<td>Attractive interactions</td>
<td>324</td>
</tr>
<tr>
<td>3.5</td>
<td>Resonant dipole–dipole interactions</td>
<td>326</td>
</tr>
<tr>
<td>3.6</td>
<td>Detection of impurities</td>
<td>328</td>
</tr>
<tr>
<td>4</td>
<td>Rydberg Quantum Optics</td>
<td>328</td>
</tr>
<tr>
<td>4.1</td>
<td>Photon sources</td>
<td>329</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Deterministic photon source</td>
<td>329</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Atom–light interfaces</td>
<td>332</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Probabilistic photon sources</td>
<td>332</td>
</tr>
<tr>
<td>4.2</td>
<td>From Rydberg blockade to photon blockade</td>
<td>335</td>
</tr>
<tr>
<td>4.3</td>
<td>Quantum gates</td>
<td>338</td>
</tr>
<tr>
<td>4.4</td>
<td>Detection</td>
<td>340</td>
</tr>
<tr>
<td>4.5</td>
<td>Experimental progress</td>
<td>342</td>
</tr>
<tr>
<td>4.6</td>
<td>Hybrid quantum optical interfaces</td>
<td>343</td>
</tr>
<tr>
<td>5</td>
<td>Outlook</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Afterword</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>346</td>
</tr>
<tr>
<td>9.</td>
<td>Mirror-Mediated Cooling: A Paradigm for Particle Cooling via the Retarded Dipole Force</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Tim Freegarde, James Bateman, André Xuereb and Peter Horak</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>352</td>
</tr>
<tr>
<td>2</td>
<td>Memory in Optical Cooling</td>
<td>352</td>
</tr>
<tr>
<td>2.1</td>
<td>Doppler cooling</td>
<td>353</td>
</tr>
<tr>
<td>2.2</td>
<td>Sisyphus cooling</td>
<td>354</td>
</tr>
<tr>
<td>2.3</td>
<td>Cavity-mediated cooling</td>
<td>355</td>
</tr>
<tr>
<td>3</td>
<td>Mirror-Mediated Cooling</td>
<td>356</td>
</tr>
<tr>
<td>3.1</td>
<td>Classical description</td>
<td>356</td>
</tr>
<tr>
<td>3.2</td>
<td>Semi-classical description</td>
<td>359</td>
</tr>
<tr>
<td>4</td>
<td>Binding and Higher-Order Cooling Terms</td>
<td>362</td>
</tr>
<tr>
<td>5</td>
<td>Transfer Matrices</td>
<td>365</td>
</tr>
<tr>
<td>6</td>
<td>Enhancements and Optomechanics</td>
<td>369</td>
</tr>
<tr>
<td>6.1</td>
<td>External cavity cooling</td>
<td>369</td>
</tr>
<tr>
<td>6.2</td>
<td>Amplified feedback cooling</td>
<td>371</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>372</td>
</tr>
</tbody>
</table>
Contents

Acknowledgments 373
References .. 374

10. Cavity Quantum Optics with Bose–Einstein Condensates 377
Lu Zhou, Keye Zhang, Guangjiong Dong
and Weiping Zhang

1 Introduction 377
2 Cavity-Mediated Atomic Dynamics: Centre-of-Mass
 Motion 379
 2.1 Cavity-optomechanics with BEC 379
 2.2 Simulation of Dicke quantum phase transition . . . 385
 2.3 Cavity-induced switching between atomic localized
 and extended states 389
3 Cavity-Mediated Atomic Dynamics: Spin Dynamics 396
4 Cavity-Assistant Quantum Measurement of Ultracold
 Atomic Gases 399
 4.1 Identifying quantum phases of atomic gases with
 optical cavity 401
 4.2 Measurement backaction on the quantum spin-mixing
 dynamics 403
5 Summary and Outlook 410
Acknowledgments 411
References 412

Part IV. Fundamental Physics 415

11. Cold Atoms and Maxwell’s Demon 417
Daniel A. Steck

1 Introduction 417
2 Level Schemes for Asymmetric Barriers 419
3 Maxwell’s Demon 426
4 Asymmetric-Barrier Dynamics 429
 4.1 Complications and solutions 434
5 Cooling Atoms 438
6 Prospects for Molecular Cooling 440
References 441
Contents

12. Thermalization from the Perspective of Eigenstate Thermalization Hypothesis

V. Dunjko and M. Olshanii

1. Introduction 443
2. The “Generic” Thermalization 445
3. The Eigenstate Thermalization Hypothesis 448
 3.1 Eigenstate thermalization property 448
 3.2 Narrowness in energy 449
 3.3 Smallness of the off-diagonals 451
 3.4 Eigenstate thermalization scenario 452
 3.5 Eigenstate thermalization hypothesis (ETH)
 (preliminary definition) 452
 3.6 Quantum versus temporal versus eigenstate-to-
 eigenstate fluctuations 453
 3.7 An attempt at a careful definition of the eigenstate
 thermalization property 454
4. Equilibration Versus Thermalization 457
5. Equilibration and the Absence of Thermalization
 in Integrable Systems 457
6. Thermalization and the ETH in Nonintegrable Systems
 6.1 Which systems thermalize? 460
 6.2 Prethermalization 462
 6.3 Thermalization and quantum chaos 462
 6.4 Thermalization and many-body localization 464
7. Outlook ... 466
Acknowledgments 467
References ... 467

13. Cold Atoms and Precision Measurements

*Wencui Peng, Biao Tang, Wei Yang, Lin Zhou, Jin Wang
and Mingsheng Zhan*

1. General Introduction 473
2. Progress of Cold Atoms Preparation 474
 2.1 Magneto-optical trap 475
 2.2 Single atom trap 476
Contents

2.3 Ion trap .. 477
3 Progress of Atom Interferometry 477
4 Gravity Measurement Using Atom Interferometry .. 481
 4.1 Gravity measurement 481
 4.2 Gravity gradient measurement 483
5 Rotation Measurement Using Atom Interferometry 483
6 Gravitational Wave Detection 487
 6.1 Gravitational wave 487
 6.2 Situation and progress 488
 6.3 Gravitational wave detection using atom
 interferometer 489
7 Cold Atom Clock .. 490
 7.1 Microwave clock 490
 7.2 Space clock 494
 7.3 Optical clock 495
 7.4 Chip based clock 498
8 Determination of the Fundamental Constant 499
 8.1 Determination of gravitational constant 499
 8.1.1 Traditional methods of gravitational constant
 measurement 499
 8.1.2 Determination of gravitational constant with
 cold atoms 499
 8.2 Determination of fine structure constant 501
 8.2.1 Traditional methods of fine structure constant
 determination 501
 8.2.2 Determination fine structure constant with cold
 atoms 502
9 Testing Fundamental Physics 503
 9.1 Equivalence principle test 504
 9.2 Local Lorentz invariance test 506
 9.3 Test of local position invariance 506
 9.4 Other tests 507
10 Summary ... 507
References ... 508
Index .. 517