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Quantum-Mechanical Simulation of an Atomic Beam Focused by an Optical
Standing Wave �

HE Ming(��), WANG Jin(
�), TU Xian-Hua(���), JIANG Kai-Jun(���),

WANG Yi(	�), ZHAN Ming-Sheng(
��)
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071

(Received 3 December 2001)

Recent experiments have demonstrated that the light pressure force from an optical standing wave (SW) focuses
an atomic beam to sub-micrometre dimensions. We start from a two-dimensional time-dependent Schr�odinger
equation and reduce it to a one-dimensional equation by a paraxial approximation. We calculate some theoretical
limits on the focusing of an atomic beam by an SW optical �eld. It is found that two parameters, the atomic
velocity and the intensity of the laser beam, play an important role in determining the deposition quality.

PACS: 03. 75. Be, 32. 80. Lg, 42. 82. Cr, 85. 40. Ux

The focusing of neutral atoms using near-resonant
light �elds has been an interesting subject recently.
This has been stimulated to a large extent by the
possibility of generating focal spots on the nanome-
tre scale using specially con�gured laser intensity pro-
�les. Particularly, it is interesting that the high-
resolution focusing is combined with atomic deposi-
tion on to a substrate.[1;2] This technique has been
termed atom lithography.[3] As a consequence of the
small de Broglie wavelength, atom lithography has the
potential for high resolution.[4]

The atom-lithography experiments have been per-
formed with a particle optics approach and in terms of
time-dependent classical trajectories of atoms. Some
important factors that determine the outcome of the
experiments have been identi�ed and the experimen-
tal techniques have been progressively re�ned since
the early demonstrations, resulting in signi�cant im-
provements in both resolution and contrast. The clas-
sical analyses predict that one could obtain features
as narrow as 5 � 10 nm. Ultimately, the feature size
should be limited by the wave nature of the atom, and
it is interesting to discover what the limits are. Clas-
sical approaches can obtain only rough estimates.[5]

The light force on an atom has been studied
widely.[6] In general, the force felt by an atom in a light
�eld can be decomposed into both velocity-dependent
and conservative terms. The velocity-dependent term,
which arises from Doppler shifts experienced by the
atom and from nonadiabatic e�ects, has been uti-
lized extensively for laser cooling.[7] Many practical
applications have made use of these dissipative terms,
such as the slowing and trapping of atoms and the
collimation of atom beams to a high degree. How-
ever, the velocity-dependent terms must be negligible
if a particle-optical approach to the laser focusing of
atoms is to be applicable in a straightforward way.
Many of the fundamental concepts in particle optics
presume a conservative potential.

Fortunately, for a wide range of parameters the
velocity-dependent terms in the light force can be ig-

nored, and a conservative potential can be derived.
In this regime the light force is often referred to as
the dipole force. If the laser intensity is relatively
high and the detuning from the resonance is relatively
small, the potential is[8]

U(x; y; z) =
~�

2
ln [1 + p(x; y; z)] (1)

with

p(x; y; z) =
I(x; y; z)
2

Is(
2 + 4�2)
; (2)

where 
 is the natural linewidth of the atomic tran-
sition, � is the detuning of the laser frequency of
the atomic resonance, I(x; y; z) is the laser intensity,
and Is is the saturation intensity associated with the
atomic transition.

In this Letter, we have ignored any y-dependence
of the laser intensity because it is assumed that any
light force along this direction will be negligible com-
pared with that from the standing wave.[9] We assume
that the optical potential for the focusing experiment
has the form of

U(x; z) = U(x)g(z); (3)

where the envelope function g(z) is the pro�le of the
laser beam along the z-direction, e.g. a Gaussian.[9]

U(x) is the conservative pseudopotential[10]

U(x) =
~�

2
ln [1 + p(x)]

=
~�

2
ln

�
1 +

p0
2 + p0

cos(2kx)

�
; (4)

where k = 2�=� is the wave vector of the laser light,
p0 = p= cos(kx)2. For � < 0 we expand Eq. (4) to
second order about x = 0. Throwing out the con-
stant terms, we �nd that the optical potential along
the x-axis is a parabolic potential

U(x) �
k2~�p0
2(1 + p0)

x2: (5)
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The two-dimensional time-dependent Schr�odinger
equation is then

H	(x; z; t) = i~
@

@t
	(x; z; t); (6)

where the Hamiltonian is

H = H0 + U = �
~
2

2m
r2 + U(x; z) (7)

with m being the mass of atoms.

Fig. 1. Atom wave packet through the potential as de-
scribed by Eq. (6) for the propagation distances of (a) 78
and (b) 140 (in units of laser beam radius) with a laser
intensity of 20mW/cm2 in the region ��=4 � x � 3=4�.

We choose the initial wave packet to be a Gaussian
in the z- and x-directions,[11] propagating as a plane
wave with momentum ~kz0 along the z-direction
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where the widths of these Gaussians are chosen to be
�z � �x and thus

	(x; z; t) = exp[�iE(kz0)
t

~
] (x; z; 0): (9)

Substituting Eq. (9) into Eq. (6) yields the stationary
Schr�odinger equation in two dimensions

r2 (x; z) +
2m

~2
[E(kz0)� U(x; z)] (x; z) = 0: (10)

By using a paraxial approximation, the spatial evo-
lution of the atomic wavefunction 	(x; z) along the

z-direction is then described by the Schr�odinger
equation[9;11]

i~�0
@

@z
	(x; z) =

�
�

~
2

2m

@2

@x2
+ U(x; z)

�
	(x; z);

(11)
where �0 is the centre-of-mass velocity of the incoming
atoms in the z-direction. The presence of the optical
potential U(x; z) can be treated as a small perturba-
tion to the propagation of the wave packet along the
z-direction.

Equation (11) is a parabolic partial di�erential
equation that can be solved by di�erent techniques.
One convenient method is to use the �nite-di�erence
approximation via the ordinary di�erential equations.
Using the algorithm in Ref. [11], we can solve the equa-
tion and evolve the wave packet through the two-
dimensional region. The whole calculation is carried
out in the range of one wavelength, ��=4 � x � 3=4�,

and the output is the square of the wavefunction jP j
2
.

Fig. 2. Probability distribution of the atom wave packet
at the same travel distance along the z-axis (L = 78, in
units of laser beam radius) with the same optical inten-
sity (I = 20mW/cm2) in the region ��=4 � x � 3=4�,
for various initial velocities.

As an example, we consider a thermal Rb beam
with an initial velocity from v = 20m/s to 130m/s,

max = 100MHz, and � = 100MHz. (
max de-
notes the Rabi frequency at the �eld antinode.) The
laser beam radius is chosen as r = 0:1 cm. For
these parameters, the laser intensity is selected from
5:0�10�4W/cm2 to 5:0�10�1W/cm2. The width of
the initial atomic wave packet is chosen to be Æz = 1
(in units of laser beam radius) and Æx = 4 (in units
of laser wavelength 780 nm). We do not consider the
e�ect of the transverse velocity of the atomic beam,
so the input parameters of the atomic velocity are all
chosen along the z-direction.
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Figure 1 illustrates the propagation of the atomic
wave packet through an optical potential as described
by Eq. (5). Both subplots have the same parameters of
the atomic velocity and laser intensity. From Fig. 1(a),
we can see that the initial Gaussian wave packet is
focused as it propagates through the potential. In
Fig. 1(b), all the parameters are identical to those of
Fig. 1(a) except that the propagation distance along
the z-axis is longer. The Gaussian wave packet con-
verges and then spreads as it passes through the region
of the potential. We �nd that at a certain distance
along the z-axis, the atom wave packet will be focused
to form a high peak of probability. Thus in the exper-
iment we should choose a proper distance between the
standing wave (SW) �eld and the deposit substrate.

Fig. 3. Probability distribution of the atom wave packet
at the same travel distance along the z-axis (L = 78, in
units of laser beam radius) with the same atomic velocity
(v = 50m/s) in the region ��=4 � x � 3=4� for various
laser intensities.

Fig. 2 presents the distribution of the atomic possi-
bility at the end of the z-axis (where the deposit sub-
strate is placed). With the same parameters of the
optical potential and the same propagation distance
along the z-axis, three subplots are obtained. The
atomic velocity is initialized with di�erent values. It
is very interesting to note a variety of the possibility
peaks for di�erent atomic velocities. Figure 2(a) with
the atomic velocity of 50m/s presents a sharp peak
and a narrow full width at half maximum (FWHM)
of 10.5 nm. In Fig. 2(b) with 70m/s, the peak is lower

and the FWHM is 31.7 nm. In Fig. 2(c) with 80m/s,
there is a much lower peak with a broader FWHM of
63.3 nm. We �nd that the velocity of the atom beam
is critical in the atom focusing experiments. As Fig. 2
shows, the initial velocity spread in the atomic beam
plays a signi�cant role in determining the linewidth
of atomic deposition. Thus we need to reduce the
atomic velocity distribution to improve the e�ect of
the atomic focusing in the atom-lithography experi-
ment.

Figure 3 shows that when the velocity distribution
is reduced at the point of 50m/s, the intensity of the
laser beam changes. In Fig. 3(a), we obtain a peak
with a narrower FWHM of 10.5 nm when the laser
intensity is 20mW/cm2. When the laser intensity is
reduced, as shown in Figs. 3(b) and 3(c), the FWHM
of the peaks increases. In Fig. 3(d), where the light
power is doubled, two additional small peaks appear,
due to the fact that the atoms have been focused be-
fore they reach the substrate and then spread. There-
fore, it is not useful to improve the quality of atom
lithography by increasing the laser light power inde-
pendently. In the experiment, the laser light power
should be set at a proper �xed value.

In summary, we started from a two-dimensional
Schr�odinger equation and then reduced it to a one-
dimensional equation to describe the behaviour of a
Rb atomic beam in a focusing experiment. Consider-
ing the velocity distribution of the atoms and varying
the power of the laser beam, we simulated the ini-
tial Gaussian atomic wave packet propagating through
the laser light optical potential. This is helpful for
us in understanding the properties of atomic focus-
ing and will be useful in the future for the Rb atom-
lithography experiment. Through our calculations, we
have estimated the spot size of the Rb atom beam de-
posited onto the surface of the substrate. It has been
found that two parameters, the atomic velocity and
the intensity of the laser beam, played an important
role in determining the deposition quality. In a fu-
ture experiment, we should consider reducing the lon-
gitudinal velocity distribution. At the same time, we
should also choose an appropriate laser power and de-
position distance, so that a perfect peak can be formed
through the deposition of the bulk of the atomic beam.
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