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We demonstrate an experimental observation of coherent population trapping-Ramsey interference in cold 87Rb
atoms by employing the time-domain separated oscillatory fields’ method. The interference fringe with line width
of 80 Hz is obtained. We propose a novel method to measure the cold atom number. The measurement is
insensitive to the pump beam intensity, the single photon detuning and even the initial state population. We use
this method to normalize the interference signal and to improve the signal-to-noise ratio significantly.
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Coherent population trapping (CPT) is a phe-
nomenon that occurs when two laser fields interact
with a three-level atomic system. When the detuning
of the laser frequencies satisfies the two-photon reso-
nance condition, atoms will be coherently trapped in
the dark state, and will stop absorbing laser fields.
This phenomenon has been investigated by many
groups,[1−6] and has numerous applications. One can
use counter-propagating coherent beams to drive zero-
velocity atoms into the dark state and cool atoms be-
low the single-photon recoil energy.[7] One can also use
CPT to measure the ground state Zeeman splitting
and realize a sensitive magnetometer.[8,9] CPT sig-
nal reflects the energy level information of the ground
state, and the 0-0 transition of 87Rb atoms is insensi-
tive to the magnetic field in the first order, so we can
use the CPT signal to implement an atomic frequency
standard. In recent years, the vapor cell CPT atomic
clocks have become a new type of commercial atomic
clock.[1−4] Unlike the traditional microwave-optical
double resonance atomic clock, a passive CPT atomic
clock has an all-optical configuration. It neither needs
the microwave cavity nor the spectrum lamp, therefore
having small size and low power cost.[2,10] To build a
vapor cell CPT atomic clock, researchers usually use
microwave filed to modulate the current of a vertical-
cavity surface-emitting laser (VCSEL) and to create
sidebands as the coherent beams. The disadvantage
of this method is that the two sidebands cannot be
separated, and they will pump atoms into a dipole
forbidden trap state, this will decrease the contrast of
the CPT signal.[1] To overcome this problem, several
schemes have been proposed, for example, the push-
pull scheme,[11] the orthogonal circular polarization

with counter-propagating waves,[12] and the orthogo-
nal linear polarization CPT beam.[13]

However, due to the thermal atomic motion and
collision between alkali metal atoms and the back-
ground gases, the line width of CPT peak in hot atoms
is broaden and the central frequency of the CPT sig-
nal is shifted. This leads to decreasing the frequency
stability and accuracy of the atomic clock. Using laser
cooling and magnetic-optical trapping (MOT), one
can easily cool atoms below 1 mK, then the above tem-
perature related effects will be greatly depressed.[14,15]

More importantly, the coherent time of the CPT state
is much longer in cold atoms than in the hot gas.
As we know, coherent pulses can be used to produce
CPT-Ramsey fringes,[13] and the fringe width depends
only on the transit time 𝑇 as 1/2𝑇 . Thus long coher-
ent time means that we can increase the transit time,
and obtain a very narrow CPT-Ramsey fringe width
which could not be achieved in hot atoms. In this
work, we use the lin⊥ lin CPT beams to prepare CPT
state in cold 87Rb atoms, and use the time-domain
separated oscillatory fields’ method to obtain narrow
CPT-Ramsey fringe.

We use a relatively long coherent pulse to com-
pletely pump the cold atoms to the CPT state. After
waiting for a transit time 𝑇 , we turn on a much shorter
coherent pulse again. This pulse interferes with the
first pulse through the atoms in the CPT state. Thus
if we scan the frequencies detuning of the coherent
beams, we can obtain a CPT-Ramsey fringe with a
width of 1/2𝑇 . The first pulse, defined as preparation
pulse, pumps atoms into the dark state. The second
pulse, named as detection pulse, interfering with the
first pulse and inducing the fluorescence. Unlike the
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traditional 𝜋/2–𝜋/2 pulse sequence, the preparation
pulse is more like a 𝜋-pulse, and the detection pulse
is much shorter. This is because if the detection pulse
is long enough, it will pump the atoms into the dark
state again, and will eliminate the interference of the
two pulses.

The experimental setup is shown in Fig. 1, it in-
cludes a MOT, coherent beams, fluorescence collec-
tion system, time sequence control and data acquisi-
tion system.
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Fig. 1. Experimental setup. MOT: magneto-optical
trap; PMT: photo multiplier tube; PMF: polarization-
maintaining fiber; AOM: acousto-optical modulator; PBS:
polarization beam splitter.

One advantage of the CPT atomic clock is the
small clock size. To maintain this advantage in cold
atom device, we built a single-beam mini MOT to min-
imize the experimental system.[16] Two sets of home-
made 780 nm external-cavity diode lasers were used
as the cooling and repumping lasers. The frequencies
of trapping lasers were stabilized using polarization
spectroscopy. A 110-MHz acousto-optical modulator
(AOM) was used to shift the frequency and to switch
the trap beams. Then we coupled the laser beams to
a single-mode polarization-maintaining fiber (PMF)
and sent them to the mini MOT. About 107 87Rb
atoms were successfully cooled and trapped in the mini
MOT.

The CPT lasers were generated by an external-
cavity diode laser and an AOM. The 795 nm laser
beam double-passed the 3.4 GHz AOM to create ±1

order beams, and the 3.4 GHz AOM was driven by
a signal generator. We locked the frequency of −1

order beam to the peak of the 𝐹 = 2 → 𝐹 ′ = 1 tran-
sition, and then combined the two diffraction beams
with a polarization beam splitter (PBS) to form the
lin⊥ lin coherent beams. We used two 80MHz AOMs
to switch the coherent beams without change their
frequencies. The 1/𝑒 diameter of output beams was

4 mm and all of the cold atoms in the mini MOT were
included in the beams. Three pairs of Helmholtz coils
were used to eliminate the stray magnetic field, only
leaving a 300mG uniform magnetic field along the co-
herent beams as the quantization axis.

An optical collection system with a designed solid
angle 0.28 was used to collect the fluorescence. The
fluorescence was detected by a photo multiplier tube
(PMT). A multifunction data acquisition card was
used to record the signal and to control the AOM
drivers, signal generator and the quadrupole magnetic
field.

The CPT state is very fragile, so we have to shut
off the MOT to prepare the CPT state. We turned
on the MOT and the coherent beams alternately with
a 1 s duty cycle, 990ms for the MOT, and 10ms for
the coherent beams. After turning off the MOT, we
waited for 0.5 ms to let the quadrupole magnetic field
attenuated to zero, and turned the coherent beams on
for 2 ms to completely pump atoms into the ground
CPT state 𝐹 = 2, 𝑚𝐹 = 0 and the 𝐹 = 1, 𝑚𝐹 = 0.
After a few ms, we turned on the coherent beams again
for 100µs. Then we detuned the laser frequency and
recorded the fluorescence induced by these two pulses
in each cycle.
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Fig. 2. Fluorescence signal of the cold 87Rb atoms in-
duced by the preparation and detection CPT pulses.

A typical fluorescence signal is shown in Fig. 2.
The two steps are fluorescence induced by the prepara-
tion and detection pulse. We can see that fluorescence
of the first pulse turns to zero because the atoms are
pumped to the CPT state. The CPT-Ramsey fringe
signal is shown in Fig. 3. This fringe is normalized by
the cold atom number, and we will discuss it later.
The fringe’s line width is about 80 Hz. It is much
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narrower than the traditional CPT line width in hot
vapor which is in the order of kHz,[1] and it can also be
narrower than the hot vapor CPT-Ramsey line width
which is mainly limited by the coherent time.[13]

Due to the fluctuation of cold atom number, the
signal to noise ratio (SNR) of the Ramsay fringe is
poor. The maximum fluctuation is about 10%. We
need to normalize the detection fluorescence signal
and to eliminate the noise caused by the atom number
fluctuation.

Usually, atom number was measured by a resonant
probe beam if the cross section and the intensity of the
probe field are known. The cross section depends on
laser detuning, polarization, line width and Zeeman
shift, so it is difficult to determine the atom number
accurately. To overcome this disadvantage, we can
use the optical pumping process to determine the cold
atom number.[17,18] This method does not depend on
the probe beam intensity, detuning, polarization and
etc. CPT is a kind of optical pumping process too,
so we would like to calculate the fluorescence photon
number emitted during the CPT pumping process and
to find whether it can give the information of the atom
number.
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Fig. 3. Large range scan of the CPT-Ramsey fringe and
detail range scan of the fringe, the total coherent beams
intensity is 20µW, and the transit time is 𝑇 = 6ms. A
line width about 80Hz is obtained.
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Fig. 4. Schematic diagram of an ideal Λ type three-level
and two mode fields model.

As shown in Fig. 4, the fluorescence photon num-
ber induced by the CPT pumping process can be ex-

pressed as

𝑁 =

∫︁ ∞

0

𝑛Γ𝜌33(𝑡)𝑑𝑡, (1)

where 𝑛 is the cold atom number, Γ is the exited state
decay rate, 𝜌33(𝑡) is the density matrix element of the
excited state |3⟩. If the single photon detuning is zero
and all the atoms are initially populated in the state
|1⟩, we can find an approximate analytical expression
for 𝜌33(𝑡) from the density matrix equation

𝜌33(𝑡) =
Ω2

Γ2
exp−Ω2

Γ 𝑡 . (2)

Substitute Eq. (2) into Eq. (1), then 𝑁 = 𝑛. This
means that the total photon number is exactly the
same as the atom number. It depends neither on the
Rabi frequency Ω of the pumping beams nor the ex-
cited state decay rate.

Define 𝑁/𝑛 as photon coefficient. When the single
photon detuning is not zero or the initial state popula-
tion is a superposition of the ground state |1⟩ and |2⟩,
we numerically solve the density matrix equation to
obtain 𝜌33(𝑡), then substitute it to Eq. (1) to solve the
coefficient. We find that the photon coefficient is still
1, it depends on neither the initial state population
nor the single photon detuning when this detuning is
in the range of the natural line width.

In our experiment, we simply divided the detec-
tion pulse fluorescence signal by the preparation pulse
fluorescence signal in each cycle. By doing this we can
suppress the noise caused by the atom number fluctu-
ation. This method can significantly increase the SNR
of the Ramsay signal. Figure 5(a) is a typical CPT-
Ramsey fringe without normalization, and Fig. 5(b) is
the same fringe after normalization. We can see that
this effect is depressed.
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Fig. 5. CPT-Ramsay fringe before (a) and after (b) nor-
malizing the cold atom number. The total coherent beams
intensity is 20µW, and the transit time is 𝑇 = 1ms.
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The SNR of the CPT-Ramsey signal is still low
even after normalizing the atom number. This is
mainly because the length of detecting pulse is only
100µs, which means that frequency noise of the coher-
ent beams below 10 kHz cannot be averaged during the
measurement.

In summary, CPT-Ramsey fringe line width as nar-
row as 80 Hz has been obtained in cold 87Rb atoms,
and a novel method to eliminate the signal noise
caused by the cold atom number fluctuation is pro-
posed and realized. This will helpful for improving the
clock frequency stability of cold 87Rb atomic clocks.

We acknowledge Professor Y. F. Zhu and Professor
J. Luo for helpful discussions.
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