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We propose a scheme for a chip-based dynamic micro atom trap where the trap potentials are created by square
wave radiation and an inhomogeneous static magnetic field. The parameters of this kind of trap array can be
modulated dynamically. Both one-dimensional (1-D) and two-dimensional (2-D) trap array potentials for 6Li
atoms are discussed. The 1-D trap is combined by a square wave radiation (6 kHz) and a gradient magnetic field
(300G/cm), the array constant of 1-D trap is 0.85𝜇m. Since the trap array does not require any laser field, it
can be easily integrated on a chip and it is useful in applications of scalable quantum information processing.
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Recently, the research of the atom chip has at-
tracted much attention.[1,2] Similar to dc and rf radi-
ation, it can be applied to chip wires to form atom
traps.[3−5] In order to control the atoms more flexibly,
researchers have adopted rf mixing[6−8] and rf combs[9]

in atom traps. Chip-based neutral atom traps are suit-
able for quantum information processing (QIP).[10−13]

However, it is difficult to realize analog frequency mix-
ing and frequency combs. Since the control of the
square wave is more versatile than that of sine wave,
the digital signal is more suitable for chip-based rf
atom traps.[14] In this Letter, we propose a dynamic
micro trap scheme. A square wave radiation and an
inhomogeneous static magnetic field are used to gen-
erate dynamic micro trap, and the trap is very easy
to integrate with other systems. The trap array gen-
erated by the square wave and magnetic field can be
modulated dynamically. It is different from the ordi-
nary static magnetic trap array. The feature of the
one-dimensional trap array is mainly studied, and the
scheme of the two-dimensional trap array is briefly
discussed.

The analog rf signals cannot be directly gener-
ated by a digital signal generator without a digital-
to-analog converter (DAC). A sine signal provides
only single frequency, and frequency comb or multi-
frequency are usually generated by analog frequency
mixing. In contrast, square wave can be considered
as a mixture of a serial of multi-frequency sine waves
and described as[14]

𝐵(𝑡) =𝐵0

[︁
sin(𝜔𝑡) +

1

3
sin(3𝜔𝑡) + · · · 1

𝑛
sin(𝑛𝜔𝑡)

+ · · ·
]︁
, 𝑛 = 1, 3, 5, · · · , (1)

where 𝜔 = 2𝜋/𝑇 , and 𝑇 is the period of the square
wave, 𝜋𝐵0/4 is its amplitude. According to Eq. (1),
the combined field of a square wave and others is equal
to multi-frequency sine wave fields, that is, a square
wave could be considered as a series of analog rf sig-
nals.

In a homogeneous static magnetic field, if we ap-
ply a square wave field with the frequency being
nearly resonant with the Zeeman sublevel transition
of atom, then the far higher-order detuned frequencies
of square wave can be treated as small perturbations.
This square wave is similar to monochromatic analog
frequency radiation and can be used to build micro rf
traps.[14]
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Fig. 1. (a) Setup of square wave on an atom chip, which
is perpendicular to the gravity field. (b) The flux density
of the inhomogeneous static magnetic field. (c) Intensity
distribution of the inhomogeneous magnetic field.

If the external bias magnetic field is inhomoge-
neous, the trap will be more complex and more in-
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teresting. A simple setup for the usage of a square
wave on an atom chip is shown in Fig. 1(a). The two
contra-propagated dc currents can be used to form a
linear magnetic field between the two side wires; the
square wave will propagate via the central wire. The
space of two side wires is 1.0 mm; two dc currents are
set to be 37.5 mA. Thus an atom trap can be formed
near the chip surface. At a height of 1.0 mm from the
atom chip, the orientation of inhomogeneous magnetic
field is along the z axis and parallel to the surface of
atom chip; the intensity of magnetic field 𝐵 is exactly
proportional to the distance |𝑧| (as shown in Figs. 1(b)
and 1(c)), the gradient of the linear field is approxi-
mately 300 G/cm.

In inhomogeneous static magnetic field, different
subsets of square wave will resonate with the Zeeman
sublevels of neutral atoms at proper positions. For
example, if we assume a one-dimensional (1-D) linear
static magnetic field in the 𝑧 direction, as shown in
Fig. 1, and 𝐵(𝑧) = 𝑏𝑧, where 𝑏 is the gradient, then all
the components could be resonant with certain energy
states at some positions. In Fig. 2, the frequency of
the square wave is supposed to be 𝑓 = 6 kHz, and 𝑏 =
300 G/cm, according to 𝑧 = ℎ̄𝜔𝑛/𝑏𝜇𝐵𝑔𝐹 ∆𝑚𝐹 , where
∆𝑚𝐹 = 1, 𝑔𝐹 = −2/3 in the case of 6Li, then fre-
quency components 𝜔 = 2𝜋×6 kHz, 3𝜔 = 2𝜋×18 kHz,
and 5𝜔 = 2𝜋× 30 kHz will resonate with Zeeman sub-
levels at positions 𝑧 = ±0.215µm, ±0.644µm, and
±1.07µm, respectively.
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Fig. 2. Square wave resonate with 6Li atom levels in 1-
D linear magnetic field, 𝐵(𝑧) = 𝑏𝑧, 𝑏 = 300G/cm. The
frequency of the square wave is 6 kHz.

When an analog rf field (𝜔) interactes with a two-
sublevel (𝑚𝐹 ,𝑚

′
𝐹 ) atom system (6Li), the coupling

strength between |𝐹,𝑚𝐹 ⟩ and |𝐹,𝑚′
𝐹 ⟩ is[15]

𝜇 =
1

4
𝑔𝐹𝜇𝐵(𝐵rf × 𝑒𝑧)

√︁
𝐹 (𝐹 + 1) −𝑚𝐹𝑚′

𝐹 , (2)

where 𝑔𝐹 is the 𝑔 factor, and 𝑒𝑧 is the direction of the
1-D linear static magnetic field (𝐵(𝑧)). As discussed
in Ref. [14], the eigenvalues of this coupling system

read

𝐸±(𝑧) = ±1

2

√︁[︀
𝜇𝐵𝑔𝐹𝐵(𝑧) − ℎ̄𝜔

]︀2
+ ℎ̄2Ω2

𝑅, (3)

where Ω𝑅 is the Rabi frequency,[16] Ω𝑅 = 𝜇/ℎ̄.
The case of a square wave field is different from

that of an analog rf filed. For the frequency compo-
nents, when Rabi frequency (Ω𝑅 < 𝜔) is sufficiently
low and frequency separation (2𝜔) is large enough,
the coupling positions can be separated as shown in
Fig. 3. In a special range, only one nearly resonant
component should be considered, while others can be
considered as the dynamic Stark shift.[17] For example,
from 0 to 0.5µm, the resonant frequency is 𝜔 as shown
in Fig. 3, the adiabatic potential is determined by 𝜔,
and other frequency components (3𝜔, 5𝜔, 7𝜔, · · ·) only
cause dynamic Stark shifts.
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Fig. 3. Separation of the coupling frequency in space.
The dotted lines represent the Zeeman sublevels in a 1-D
linear magnetic field, 𝐵(𝑧) = 𝑏𝑧, 𝑏 = 300G/cm; the solid
lines define the local coupling frequency.

According to Eq. (3), we could determine the dy-
namic Stark shift by

∆ =
ℎ̄2Ω2

𝑅

4[𝜇𝐵𝑔𝐹𝐵(𝑧) − ℎ̄𝜔]
.

Considering the square wave field, a series of non-
resonant frequencies components contribute to the dy-
namic Stark shift, which should be modified as

∆𝑛 =
∑︁
𝑗 ̸=𝑛

ℎ̄2Ω2
𝑅

4[𝜇𝐵𝑔𝐹𝐵 − ℎ̄𝜔𝑗 ]
.

The consequent Hamiltonian is

𝐻(𝑧) =

⎛⎜⎝ 𝜇𝐵𝑔𝐹𝐵(𝑧)

2
− ℎ̄𝜔

2
− ∆𝑛

ℎ̄Ω𝑅

2
ℎ̄Ω𝑅

2
ℋ22

⎞⎟⎠ ,
(4)

ℋ22 = − 𝜇𝐵𝑔𝐹𝐵(𝑧)

2
+

ℎ̄𝜔

2
+ ∆𝑛

and the eigenvalues read

𝐸±(𝑧) = ±1

2

√︁
[𝜇𝐵𝑔𝐹𝐵(𝑧) − ℎ̄𝜔 + 2∆𝑛]

2
+ ℎ̄2Ω2

𝑅.

(5)
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The near resonant frequencies are strongly coupled
with the sublevels at certain positions and the far de-
tuning components also weakly affect the potential en-
ergies. According to the Landau-Zener effect,[18] the
atoms are transferred from initial state to another adi-
abatically. The corresponding adiabatic potentials are
described as[7,9]

𝑉𝑎𝑑,±(𝑧) = (−1)𝑛(𝑧)
[︂
𝐸±(𝑧) ∓

ℎ̄𝜔𝑛(𝑧)

2

]︂

∓
𝑛(𝑧)−1∑︁
𝑘=1

(−1)𝑘ℎ̄𝜔𝑘, (6)

where 𝑛 = 1, 2, 3, · · ·, 𝜔1 = 𝜔, 𝜔2 = 3𝜔, 𝜔3 = 5𝜔,· · ·.
As shown in Fig. 4, a periodic potential which is simi-
lar to the potential of a standing wave can be realized.
This potential is a 1-D trap array, and cold atoms can
be trapped at the potential minima. The array con-
stant which is defined as the distance between two
adjacent potential minima is

𝑑 = 2ℎ̄∆𝜔/(𝜇𝐵𝑔𝐹 𝑏), (7)

where ∆𝜔 is the frequency difference between two ad-
jacent components. The potential depth is ℎ̄𝜔− ℎ̄Ω𝑅,
for 𝑏 = 300 G/cm, ∆𝜔 = 12 kHz, the array constant is
0.85µm. According to Eq. (7), the array constant can
be adjusted either by altering the frequency difference
or by changing the bias magnetic field gradient. As
shown in Fig. 5, the array constant is proportional to
the frequency difference and inversely proportional to
the gradient of bias magnetic field.
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Fig. 4. Periodic adiabatic potential of a square wave in
1-D linear magnetic field. The Rabi frequency Ω𝑅 is set to
1 kHz, 𝑏 is 300G/cm, and the array constant is 0.85µm.

In contrast to optical trap arrays, this hybrid trap
array does not require any laser field, and there is no
spontaneous emission involved in the trapping pro-
cess. Compared with static magnetic array, this trap
array can be dynamically tuned. Since this trap ar-
ray is generated by coupling a square wave field with
a static inhomogeneous magnetic field, it can be eas-
ily integrated on an atom chip. This kind of dynamic

array can be used for atom optics and atom lithog-
raphy, it is also a potential candidate for realization
of a scalable QIP.[10−13,19−22] The 1-D trap array can
also be used as grating for matter waves and can be
modulated dynamically.
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Fig. 5. Dependence of array constant on frequency differ-
ence (a) and on the gradient of bias magnetic field (b).
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Fig. 6. (a) Two-dimensional magnetic field with gradient
𝑏𝑟 = 300G/cm. (b) Two-dimensional ring trap potential
array for 6Li atoms.

The 1-D trap array can be easily extended to 2-
D by perpendicularly applying a homogeneous mag-
netic field to the atom chip. The 2-D magnetic
trap array is defined by a cylindrical field 𝐵(𝑟) =
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𝑏𝑟𝑟(𝑟 =
√︀
𝑥2 + 𝑦2), where forms the guide poten-

tial for weak-field seeking atoms.[23] The configuration
of the 2-D magnetic field and a 2-D hybrid trap ar-
ray (ring trap potential) are shown in Figs. 6(a) and
6(b). The distance between two adjacent ring poten-
tials is also deterimined by Eq. (7) and the potential
depth is ℎ̄𝜔− ℎ̄Ω𝑅. If we ignore the far detuning sine
wave components, we can change the number of the
ring traps by selecting position of the 2-D magnetic
field. This novel ring traps can be applied in atom
interferometers.[24,25]

The above analysis is based on a simple two-level
6Li atom system, it is also suitable for multi-sublevel
systems, such as Rb and Cs.[7,9,26−28]

In conclusion, we have demonstrated a scheme for
a chip-based dynamic micro atom trap, which is com-
bined by a square wave and a static inhomogeneous
magnetic field. We calculate the 1-D and 2-D peri-
odic trap arrays for 6Li atoms. The trap array con-
stant can be modulated dynamically. The 1-D peri-
odic trap array has important applications in dynamic
atom gratings, atomic optics and implementing QIP;
the 2-D periodic trap array can be used in atom in-
terferometers.
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