Global Metabolic Responses of NMRI Mice to an Experimental
Plasmodium berghei Infection

Jia V. Li,†,‡ Yulan Wang,†,# Jasmina Saric,†,‡ Jeremy K. Nicholson,† Stephan Dirnhofer,§ Burton H. Singer,† Marcel Tanner,† Sergio Wittlin,‡ Elaine Holmes,‡ and Jürg Utzinger*†,‡

Department of Biomolecular Medicine, Division of Surgery, Oncology, Reproductive Biology and Anaesthetics (SORA), Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom, Department of Public Health and Epidemiology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland, Institute of Pathology, University Hospital Basel, Schönleinstrasse 40, CH-4031 Basel, Switzerland, Office of Population Research, Princeton University, Wallace Hall 245, Princeton, New Jersey 08544, and Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, P.O. Box, CH-4002 Basel, Switzerland

Received March 20, 2008

We present a metabolism-driven top-down systems biology approach to characterize metabolic changes in the mouse resulting from an infection with Plasmodium berghei, using high-resolution 1H NMR spectroscopy and multivariate data analysis techniques. Twelve female NMRI mice were infected intravenously with ~20 million P. berghei-parasitized erythrocytes. Urine and plasma samples were collected 4–6 h before infection, and at days 1, 2, 3, and 4 postinfection. Multivariate analysis of spectral data showed differentiation between samples collected before and after infection, with growing metabolic distinction as the time postinfection progressed. Our analysis of plasma from P. berghei-infected mice showed marked increases in lactate and pyruvate levels, and decreased glucose, creatine, and glycerophosphoryl choline compared with preinfection, indicating glycolytic upregulation, and increased energy demand due to P. berghei infection. The dominant changes in the urinary metabolite profiles included increased levels of piperacilic acid, phenylacetylglycine, and dimethylamine, and decreased concentrations of taurine and trimethylamine-N-oxide, which may, among other factors, indicate a disturbance of the gut microbial community caused by the parasite. Although several of the observed metabolic changes are also associated with other parasitic infections, the combination of metabolic changes and, in particular, the occurrence of piperacilic acid in mouse urine postinfection are unique to a P. berghei infection. Hence, metabolic profiling may provide a sensitive diagnostic tool of Plasmodium infection and the control of malaria more generally.

Keywords: malaria • Plasmodium berghei • mouse • metabonomics • metabolomics • 1H NMR spectroscopy • multivariate data analysis • urine • plasma

Introduction

Malaria, which is caused by an infection of a protozoan of the genus Plasmodium, is the most severe and widespread parasitic disease in the tropics and subtropics. Indeed, malaria due to Plasmodium falciparum accounted for >500 million clinical disease episodes in 2002,1 and >1 million deaths were attributed to the disease in 2001.2 Malaria is particularly rampant in sub-Saharan Africa, with children under the age of 5 years and pregnant women at highest risk of disease-associated morbidity and mortality.3,4 The global burden of malaria is currently estimated at ~40 million disability-adjusted life years (DALYs).5 Among more than 100 species of Plasmodium, four infect humans, that is, P. falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and Plasmodium yoelii.6–8 The molecular mechanisms of infection and response to therapeutic interventions have been studied extensively in rodent models using murine malaria parasites, including Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii.5–8 There is a new global emphasis on the eradication of malaria, but the challenges ahead to control, let alone local elimination or eradication of the disease, are formidable.9 A particularly vexing problem is the large number of asymptomatic carriers10,11 for whom detection of parasitemia with conventional methods is difficult. Hence, there is a need to discover, develop, and
deploy novel tools and strategies for biomarker discovery to aid diagnosis, interventions and integrated control packages. Access to prompt diagnosis and efficacious antimalarial drugs, for example, is one of the current pillars of malaria control. Microscopic detection of parasites in finger prick blood samples remains the most widely used diagnostic test in malaria-endemic settings. This approach allows determination of the degree of infection (parasitemia) at relatively low cost, but requires experienced microscopists, and lacks sensitivity at low levels of parasitemia. A number of rapid malaria diagnostic tests have been developed over the past decade. They are based on immunochromatographic dipstick assays and find increasing use for self-diagnosis, but are costly and have imperfect sensitivity, particularly when parasitemia is low. The issue of diagnosis is just one example to illustrate the need for new and improved tools that can be utilized for individual diagnosis of malaria and for monitoring disease control programs and, hence, measuring progress toward local elimination and eradication. Various technological approaches, including transcriptomics, have been utilized to characterize malaria infection and to further our understanding of the difference between parasite strains.

The combination of high-resolution 1H NMR spectroscopy of biofluids and tissue samples with multivariate statistical analysis has been shown to be useful in biomarker discovery and, hence, may facilitate development of new diagnostic tools, drug targets, and vaccines. Here, we explore further the characteristics of malarial infection by applying a metabolism-driven top-down systems biology strategy that has proved effective in studying transgenomic interactions in mammalian symbiotic systems, for example, the gut microbiota. Similar approaches have also been successfully applied to characterize the systemic metabolic fingerprints of Schistosoma spp. and Trypanosoma spp. infections in rodent models. To establish the metabolic consequences of a P. berghei infection, we focus on a mouse model and compare urinary and plasma metabolite profiles from host animals prior to infection with profiles generated from biofluids obtained 1–4 days postinfection. The ultimate goal is to enhance our understanding of the metabolic response to a Plasmodium infection and to identify candidate biomarkers that may be translatable to diagnosis and prognosis in human populations. Our investigation is complemented with a histological examination of kidney, liver, and spleen obtained from P. berghei-infected mice upon dissection, that is, at day 4 postinfection.

Materials and Methods

P. berghei-Mouse Model. The animal experiments described here were carried out at the Swiss Tropical Institute (Basel, Switzerland), adhering to local and national regulations of laboratory animal welfare in Switzerland (permission no. 2081). A total of 12 out-bred NMRI strain female mice, aged ~3 weeks, were purchased from RCC (Füllinsdorf, Switzerland) and acclimatized for 4 days. Mice were randomly allocated to 1 of 3 cages, marked with individual identifiers, and group-housed in batches of 4 throughout the study. Mice were kept in stable environmental conditions (temperature, 22 °C; relative humidity, 60–70%; 12-h light/12-h dark cycle) and had free access to community tap water and special pellet diet (9099 PAB-45, purchased from Provinzi Kliba AG; Kaiseraugst, Switzerland). At the onset of the experiment, mice weighed between 22.7 and 26.5 g (mean = 23.8 g; standard deviation (SD) = 1.2 g).

Each mouse was infected intravenously with ~20 million parasitized erythrocytes (GFP-transfected P. berghei strain ANKA), as follows: heparinized blood from a donor mouse with ~30% parasitemia was taken, diluted in physiological saline to ~100 million parasitized erythrocytes per mL of blood, and an aliquot of 0.2 mL of this suspension (containing ~20 million P. berghei-parasitized erythrocytes) was then used for injection.

Biofluid Collection. Samples of urine and blood were collected at 5 time points, that is, 4–6 h before infection, and at days 1, 2, 3, and 4 postinfection. Following sample collection, the body weights of mice were measured using a Mettler balance (model K7T; Greifensee, Switzerland).

Sample collection was always carried out between 08:00 and 11:00 to minimize diurnal variations in urinary and plasma metabolite concentrations. At least 20 μL of urine was collected into a Petri dish by gently rubbing the abdomen of the mouse. Mice that failed to generate sufficient quantities of urine were placed individually into empty cages and observed until they released a few drops of urine which was immediately collected with a micropipette. Urine was transferred into 1.5 mL Eppendorf tubes, placed on dry ice, and transferred to a freezer at −80 °C.

Between 40 and 50 μL of blood was collected into a Sodium-heparin hematocrit capillary (Brand GMBH + CO KG; Wertheim, Germany) from the tail of the mouse by cutting off its tip. Subsequently, plasma was separated from red blood cells by centrifugation (model 1–15, Sigma; Osterode am Harz, Germany) at 4000g for 5 min. The ratio of plasma to red blood cells was measured and the packed cell volume (PCV) determined and expressed as a percentage. The plasma was then transferred into a 1.5 mL Eppendorf tube, placed on dry ice, and transferred to a freezer at −80 °C. Parasitemia was determined with a FACSscan (Becton Dickinson; Basel, Switzerland) by counting 100 000 red blood cells, as previously described.

Histology. On day 4 postinfection, after the final sampling of biofluids, mice were killed using the standard CO2 method. The right kidney and small portions of the liver and spleen were removed and transferred in Eppendorf tubes containing 10% formalin. Sections of these organs were cut and stained with hematoxylin and eosin prior to examination under a microscope. The results were compared with those obtained from a satellite group of noninfected control mice of the same age and sex, maintained under the same environmental conditions and killed at the same time point.

Sample Preparation and 1H NMR Spectroscopic Analysis. Urine and plasma samples were forwarded on dry ice to Imperial College (London, U.K.) for subsequent 1H NMR analyses. Individual urine samples (20 μL) were mixed with equal amounts of phosphate buffer (D$_2$O/H$_2$O (v/v), 1:1; pH 7.4), containing sodium 3-(trimethylsilyl) propionate-2,2,3,3-2H$_4$ (TSP, 0.05%) for a chemical shift reference, and 3 mM Na azide was transferred into a 1.7 mm micro-NMR tube. A standard one-dimensional (1D) 1H NMR spectrum was acquired for each urine sample with a pulse (recycle delay (RD)-90°-t$_1$-90°-t$_m$-90°-acquire free induction decay (FID)) on a Bruker DRX 600 MHz spectrometer (Rheinstetten, Germany), using a 5 mm triple resonance with inversion detection (TXI) probe operating at 600.13 MHz. The field frequency was locked on D$_2$O solvent. The water peak was suppressed by irradiation during the RD of 2 s and mixing time (t$_m$) of 100 ms. The t$_1$ was fixed to 3 ms. The 90° pulse length was adjusted to ~10 μs.
For each sample, 64 scans were recorded into ~32 000 data points with a spectral width of 20 ppm. An exponential line broadening function of 0.3 Hz was applied to FID prior to Fourier transformation. Additionally, two-dimensional (2D) NMR experiments, using 1H–1H correlation spectroscopy (COSY) and total correlation spectroscopy (TOCSY) to assist metabolite identification, were also carried out on selected urine samples utilizing standard acquisition parameters. A total of 128 increments with 80 scans were accumulated into ~32 000 data points. Water suppression was achieved as described previously for urine samples.

Data Reduction and Multivariate Analysis. 1H NMR spectra obtained from urine and plasma were automatically phased and baseline-corrected, using an in-house developed MATLAB script (T. Ebbels, Imperial College London). Urine spectra were referenced to the anomeric proton signal from α-glucose at δ 5.23. The complete spectra (δ 0.0–10.0) were each digitized into ~40 000 data points using another in-house developed MATLAB script (O. Cloarec, Imperial College London). The regions between δ 4.20 and δ 6.24 in urine spectra, and between δ 4.50 and δ 5.10 in plasma spectra were removed in order to minimize the effect of the baseline distortion caused by imperfect water suppression. Additionally, the regions δ 0.0–0.85 and δ 8.5–10.0 in urine spectra, and the regions δ 0.0–0.8 and δ 8.5–10.0 in plasma spectra containing only noise were also removed.

For each spectrum, normalization to the entire remaining spectrum was performed before multivariate data analysis was carried out. A supervised multivariate data analysis tool, orthogonal-projection to latent structure-discriminant analysis (O-PLS-DA), was applied to the analysis of 1H NMR spectral data scaled to unit variance in a MATLAB environment, using in-house developed scripts. This method employed back-scaled transformation of the variables to the covariance matrix in order to facilitate interpretation of the results.

Results

P. berghei Infection and Histological Observations. Table 1 shows the mean PCV, parasitemia and body weight in a group of 12 female NMRI mice 4–6 h before, and at days 1, 2, 3, and 4 after animals were inoculated with ~20 million *P. berghei*-infected erythrocytes each. The mean PCV dropped from 55% preinfection to 33% by the end of experiment. Using a t-test allowing for unequal variance revealed that the difference between the mean PCV values preinfection and postinfection was highly significant, already at day 1 postinfection (*p < 0.001*). Parasitemia increased exponentially from day 1 to day 4 postinfection, reaching a mean value of 34.4% at the final observation 4 days postinfection. The mean body weight of the group of mice stayed constant over the 4-day period of the experiment.

Histological examination of the spleen obtained from *P. berghei*-infected mice on termination of the experiment (i.e., day 4 postinfection) showed signs of a response to a systemic infection. In particular, there was an impressive reactive follicular hyperplasia of white pulp nodules that was accompanied by red pulp congestion with abundant hemoglobin in corded macrophages in all infected animals (Figure 1). Cellular architecture in both liver and kidney appeared normal, although there was a tendency of a higher quantity of tubular cell damage in the kidney.

1H NMR Spectroscopy of Mouse Urine. Typical 1H NMR spectra of urine obtained from mice 4–6 h preinfection, and 4 days after infection with *P. berghei* are shown in Figure 2, panels A and B, respectively. Metabolite identification was assisted by our in-house database, coupled with 2D COSY and TOCSY (results not shown). Metabolites identified from urine of both pre- and postinfected mice included 2-oxoisovalerate, 3-methyl-2-oxovalerate, 3-carboxy-2-methyl-3-oxopropanamine, acetate, citrate, succinate, dimethylamine, trimethylamine, 2-oxoglutarate, creatine, creatine, trimethylamine-N-oxide (TMAO), taurine, phenylacetylglycine (PAG), 2-oxoisocaproate, 3-ureidopropanoic acid, lactate, pyruvate, p-cresol-glucuronide, and formate, as shown in Figure 2. Additionally, pipelicolic acid was found, however, only in urine samples obtained from mice after infection with *P. berghei*. In order to focus on the metabolite changes with infection, we systematically employed an O-PLS-DA strategy.

Multivariate Analysis of 1H NMR Spectra of Urine. The O-PLS-DA models comparing pre- and postinfection spectral data were built using NMR data as the X-matrix and class information (i.e., pre- or postinfection) as the Y-matrix. For each sample collection time, a model was constructed in which one PLS component and one orthogonal component was calculated, using spectral data scaled to unit variance (Figure 3). The color of the variables or signals in the O-PLS-DA coefficient plots indicates significance of metabolites contributing to group separation, that is, between pre- and postinfection time points. The significance level increases from blue (no correlation with class) to red (highly significant in discriminating between classes), which is shown in the color bar on the right-hand side of the O-PLS-DA coefficient plots. The orienta-
tion of peaks in the plot describes the trend of changes of metabolites; upward orientation reflecting a relatively increased level of metabolite postinfection in comparison to the preinfection time point and vice versa.

The main metabolites contributing to the differentiation between NMR spectral data obtained from mouse urine before and after mice were infected with *P. berghei* are summarized in Table 2. In addition, goodness of fit (expressed as R^2) and Q^2 values for days 1 and 4 postinfection were 0.25 and 0.57 in those two O-PLS coefficient plots.
goodness of prediction (expressed as Q^2) values are given for each of the postinfection collection time points. Increasing strength of Q^2 over time from day 2 to 4 postinfection corresponds to an increase in severity of infection, underscored by the declining PCV and the elevated parasitemia level. Although many of the changes associated with increasing severity were quantitative, the number of perturbed metabolites also altered and increased as a result of infection severity. This is a property of the failure of systemic homeostatic control that results in the enhanced use of minor pathways increasing the metabolic complexity (and entropy) of the system; analogous situations have been observed in drug metabolism studies.\(^\text{25,26}\) Within the first 2 days postinfection, concentrations of urinary 2-oxoisocaproate, 2-oxoisovalerate, 3-methyl-2-oxovalerate, PAG, acetate and formate showed higher levels in the postinfected mice when compared to the preinfection time point. Additionally, PAG and dimethylamine were observed in urine obtained from \textit{P. berghei}-infected mice at later time points, when compared to preinfection. Picolinic acid was found to be one of the most discriminatory metabolites and was present only in the \textit{P. berghei}-infected urine samples.

\textbf{1H NMR Spectroscopy of Mouse Plasma.} Representative 1D 1H NMR CPMG spectra of plasma samples obtained from mice 4–6 h before and 4 days after infection with \textit{P. berghei} are shown in Figure 4. This experiment results in the attenuation of signals from fast relaxing protons from macromolecules and motionally constrained metabolites due to protein binding.\(^\text{14}\) A number of low molecular weight metabolites, such as leucine, valine, lactate, alanine, acetate, pyruvate, citrate, creatine, choline, glycerophosphoryl choline (GPC), and glucose were identified in these plasma spectra as expected from previous studies.\(^\text{27}\)

\textbf{Multivariate Analysis of 1H NMR CPMG Spectra of Plasma.} O-PLS-DA models were constructed with one PLS component and one orthogonal component utilizing unit variance scaling applied to the 1H NMR CPMG plasma spectra. The discrimination between mouse plasma samples obtained prior to and after \textit{P. berghei} infection was evident, especially on days 3 and 4 postinfection (Figure 5). Q^2 values 3 and 4 days postinfection were 0.76 and 0.64, respectively. The coefficient plots showed that the increase of the relative concentration of lactate became more significant from day 2 after infection with \textit{P. berghei} onward, whereas glucose levels decreased at days 3 and 4 postinfection, together with decreased levels of creatine and GPC.

Table 2 summarizes the plasma metabolites that significantly contributed to separation between pre- and postinfection time points.

\textbf{Discussion}

Experimental infection of female NMRI mice with \textit{P. berghei} induced a range of systemic metabolic perturbations in the urine and plasma of the host as early as 1 day postinfection, and these changes increased as the time to infection progressed. Although a satellite group of control mice were not given a sham injection of uninfected erythrocytes, the metabolic changes observed were not consistent with those associated with acute stress,\(^\text{28,29}\) and hence, the findings of the current study are almost certainly associated with a direct metabolic response to the infection. A prominent finding in the analysis of plasma spectra was the marked depletion of glucose, and an increase in lactate and pyruvate on days 2–4 postinfection when compared with the preinfection time point. This finding conforms to previous observations that \textit{Plasmodium}-parasitized erythrocytes utilize higher amounts of glucose, compared to normal erythrocytes.\(^\text{30,31}\) Malaria parasites experience an intraerythrocytic asexual stage where the parasites require energy from the host, primarily \textit{via} anaerobic glycolysis due to the lack of a functional tricarboxylic acid cycle in this stage.\(^\text{32,33}\) Our results are consistent with the increased glycolysis-related enzyme activities in \textit{P. berghei}-infected erythrocytes of mice reported already in the early 1980s.\(^\text{30}\) With regard to anaerobic glycolysis, the accumulation of lactate may cause lactic acidosis, which can cause cardiac impairment and, indeed, has been identified as a significant biochemical predictor of death in patients with severe \textit{P. falciparum} malaria.\(^\text{34,35}\) In a recent study, Daily and colleagues have shown that significant changes occur in the gene expression profiles of malaria parasites obtained from the blood of humans carrying \textit{P. falciparum}.\(^\text{15}\) Three distinct transcriptional states of the
parasite were reported, namely, (i) growth with glycolysis-provided energy, (ii) a starvation response of the parasite, and (iii) an environmental stress response. The observation of the first stage is consistent with our own metabolic findings obtained in female NMRI mice.

GPC in plasma was lower in *P. berghei*-infected mice at days 2–4 postinfection when compared to the preinfection time point. A report showing the presence of a high concentration of GPC in the adult filarial parasite *Brugia malayi* indicates that GPC is important for nutrient acquisition. GPC also regulates phospholipid composition by inhibiting the enzyme lysophosphatidic acid, and the disturbance of GPC may also suggest membrane abnormalities, as seen in the muscles of patients with Duchenne muscular dystrophy. Another possibility is that the breakdown of GPC provides free choline to *Plasmodium*, since choline is taken up into parasite-infected erythrocyte, and phosphorylated by choline kinase. Decreased levels of creatine were found in plasma of postinfected mice, which might be associated with the elevated concentration of plasma creatine phosphokinase (CPK). Indeed, increased levels of CPK is one of the biological indications of severe malaria.

To our knowledge, we report for the first time in a parasitic infection using a metabolic profiling strategy—elevated levels of pipecolic acid in urine of *P. berghei*-infected mice. Pipecolic acid is derived from either diet (e.g., dairy products, and fermented beverages) or catabolism of lysine by intestinal microbiota as depicted in Figure 6. In terms of the origin of pipecolic acid in mammalian urine, Fujita and colleagues found that it is mainly derived from lysine degradation rather than food intake. In our study, all animals were fed on the same diet and maintained under the same environmental conditions, and hence, food intake seems unlikely to have contributed to the increased pipecolic acid, especially since there was no difference in the mean body weight of animals over the course of our experiment. It is interesting to note that elevated levels of pipecolic acid in plasma are recorded in patients with chronic liver disease, Dyggve-Melchior-Clausen syndrome, pyridoxine-dependent epilepsy, and Zellweger syndrome. Pipecolic acid is known to act as a neuromodulator in the central nervous system, since it has been found to inhibit the initial gamma-aminobutyric acid (GABA; an inhibitory neurotransmitter) uptake, and to increase a high K\(^+\)-induced release of GABA. The biological role of increased pipecolic acid in a *Plasmodium* infection is still unclear, since distur-
strate the potential of a global metabolic profiling strategy
only reported as being representative of multiple
in the urine samples from mice at days 3 and 4 postinfection,
can also reflect a disturbance of the gut microbiota.51 PAG,
of dimethylamine and TMAO, which originate from choline,
ations in this organ (Figure 1). Importantly, altered excretion
urine and plasma samples had been collected on day 4
infected mice on termination of the experiment (after the final
bance of microbial community, liver dysfunction, and neuro-
logical damage are all known consequences of malaria infection.
Severe malaria is known to cause renal dysfunction.48 The
perturbation in levels of urinary dimethylamine and TMAO have been associated with renal cortex and papillary damage
in methanol intoxication patients, and in proximal tubular
toxins separately.49,50 An increase of dimethylamine was found
in proximal tubular damage, and in proximal tubular
perturbation in levels of urinary dimethylamine and TMAO
warranted to investigate whether changes occur in gut micro-
ecosystem associated with malaria. Hence, further studies are
ever, little is known about the disturbance of the gut microbial

Table 3. Changes of Metabolites Observed in Plasma Obtained from Mice at Different Time Points after Infection with P. berghei,
Compared with Preinfection Time Point

<table>
<thead>
<tr>
<th>metabolite (key)</th>
<th>chemical shift (δH)</th>
<th>day 1 (QY = 0.45; RX = 0.24)</th>
<th>day 2 (QY = 0.35; RX = 0.29)</th>
<th>day 3 (QY = 0.76; RX = 0.33)</th>
<th>day 4 (QY = 0.64; RX = 0.31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetate (17)</td>
<td>1.91(s)</td>
<td>-0.66</td>
<td>-0.62</td>
<td>-0.55</td>
<td>-0.65</td>
</tr>
<tr>
<td>creatine (13)</td>
<td>3.03(s), 3.92(s)</td>
<td>-0.62</td>
<td>-0.69</td>
<td>-0.67</td>
<td>-0.73</td>
</tr>
<tr>
<td>glycerophosphoryl choline (GPC) (31)</td>
<td>3.22(s), 3.67(m), 4.31(m)</td>
<td>+0.72</td>
<td>-0.61</td>
<td>-0.76</td>
<td>-0.80</td>
</tr>
<tr>
<td>lactate (23)</td>
<td>1.31(d), 4.11(q)</td>
<td>-0.74</td>
<td>+0.73</td>
<td>+0.74</td>
<td>+0.71</td>
</tr>
<tr>
<td>pyruvate (3)</td>
<td>2.36(s)</td>
<td>+0.68</td>
<td>+0.77</td>
<td>+0.85</td>
<td></td>
</tr>
<tr>
<td>citrate (10)</td>
<td>2.53(d), 2.66(d)</td>
<td>-0.72</td>
<td>-0.65</td>
<td>-0.72</td>
<td>-0.67</td>
</tr>
<tr>
<td>α-glucose</td>
<td>5.22(d)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*The key is consistent with the metabolite numbers shown in Figure 4 (s = singlet, d = doublet, q = quadruplet, m = multiplet). bα-Anomeric proton only reported as being representative of multiple α- and β-glucose resonances.

Figure 6. Biosynthesis of pipecolic acid from lysine.

bance of microbial community, liver dysfunction, and neuro-
ological damage are all known consequences of malaria infection.
Severe malaria is known to cause renal dysfunction.48 The
perturbation in levels of urinary dimethylamine and TMAO have been associated with renal cortex and papillary damage
in methanol intoxication patients, and in proximal tubular
toxins separately.49,50 An increase of dimethylamine was found
in proximal tubular damage, and in proximal tubular
perturbation in levels of urinary dimethylamine and TMAO
warranted to investigate whether changes occur in gut micro-
ecosystem associated with malaria. Hence, further studies are
ever, little is known about the disturbance of the gut microbial

In conclusion, we found changes in the urinary and plasma
metabolic profiles of mice in response to a P. berghei infection, indicative of global changes in metabolic regulation and homeostasis. Hence, our findings underscore the extensive metabolic cross-talk between the host (i.e., NMRI mouse) and the parasite (i.e., P. berghei ANKA strain) in vivo and demonstrate the potential of a global metabolic profiling strategy based on 1H NMR spectroscopy in conjunction with multivari-ate data analysis. Our strategy holds promise for extraction of biomarker information. Recently, the same NMR-based metabo-
onomic approach has been employed to characterize the responses in female NMRI mice to a Trypanosoma brucei brucei
infection.21 Interestingly, an upregulation of glycolysis was found in both studies. Although both Plasmodium and Trypa-
osoma are protozoan parasites, the perturbation of observed amino acids in plasma were different with an increased level of creatine in T. brucei brucei, and a decreased level in P. berghei. Our analytical strategy presented here can be utilized for the development of novel, rapid, and noninvasive diagnostic methods. We conjecture that further development of 1H NMR spectroscopy/mass spectrometry and pattern recognition-based techniques will provide the backbone for innovation, validation, and application of new diagnostic tools, drug targets and, eventually, vaccines against malaria and other parasitic
diseases. One of the most useful applications of this technology could be the identification of asymptomatic cases, an important obstacle for contemporary malaria control efforts.10

Author Contributions. Y.W., B.H.S., S.W., E.H., and J.U. conceived and designed the experiment. S.W. and J.U. collected urine, blood and tissue samples from mice. S.D. analyzed the data. J.V.L., Y.W., J.K.N., B.H.S., M.T., S.W., E.H., and J.U. wrote the paper.

Acknowledgment. We thank J.C. Janse, Leiden University, for providing the GFP transfected P. berghei strain. We are grateful to J. Santo-Tomas and C. Snyder for their expert technical support with the host-parasite model. We also thank Dr. O. Cloarec and Dr. T. Ebbels for allowing us to use MATLAB script and NMRPROG to process NMR data. J.V.L., Y.W., and J.U. received financial support from the Swiss National Science Foundation (project no. PO00P-102883, PO00P-119129). J.V.L. is grateful to a Deputy Rector Award of Imperial College London. Y.W. acknowledges funding from Nestle. The authors have declared that no competing interests exist.

References

Metabolic Profile of P. berghei Infection

